203 research outputs found

    Accurate prediction of melt pool shapes in laser powder bed fusion by the non-linear temperature equation including phase changes - isotropic versus anisotropic conductivity

    Full text link
    In this contribution, we validate a physical model based on a transient temperature equation (including latent heat) w.r.t. the experimental set AMB2018-02 provided within the additive manufacturing benchmark series, established at the National Institute of Standards and Technology, USA. We aim at predicting the following quantities of interest: width, depth, and length of the melt pool by numerical simulation and report also on the obtainable numerical results of the cooling rate. We first assume the laser to posses a double ellipsoidal shape and demonstrate that a well calibrated, purely thermal model based on isotropic thermal conductivity is able to predict all the quantities of interest, up to a deviation of maximum 7.3\% from the experimentally measured values. However, it is interesting to observe that if we directly introduce, whenever available, the measured laser profile in the model (instead of the double ellipsoidal shape) the investigated model returns a deviation of 19.3\% from the experimental values. This motivates a model update by introducing anisotropic conductivity, which is intended to be a simplistic model for heat material convection inside the melt pool. Such an anisotropic model enables the prediction of all quantities of interest mentioned above with a maximum deviation from the experimental values of 6.5\%. We note that, although more predictive, the anisotropic model induces only a marginal increase in computational complexity

    Suitably graded THB-spline refinement and coarsening: Towards an adaptive isogeometric analysis of additive manufacturing processes

    Get PDF
    In the present work we introduce a complete set of algorithms to efficiently perform adaptive refinement and coarsening by exploiting truncated hierarchical B-splines (THB-splines) defined on suitably graded isogeometric meshes, that are called admissible mesh configurations. We apply the proposed algorithms to two-dimensional linear heat transfer problems with localized moving heat source, as simplified models for additive manufacturing applications. We first verify the accuracy of the admissible adaptive scheme with respect to an overkilled solution, for then comparing our results with similar schemes which consider different refinement and coarsening algorithms, with or without taking into account grading parameters. This study shows that the THB-spline admissible solution delivers an optimal discretization for what concerns not only the accuracy of the approximation, but also the (reduced) number of degrees of freedom per time step. In the last example we investigate the capability of the algorithms to approximate the thermal history of the problem for a more complicated source path. The comparison with uniform and non-admissible hierarchical meshes demonstrates that also in this case our adaptive scheme returns the desired accuracy while strongly improving the computational efficiency.Comment: 20 pages, 12 figure

    Advanced isogeometric simulations of coupled problems

    Get PDF

    A unified multiscale vision of behavioral crowds

    Get PDF

    Patch-wise Quadrature of Trimmed Surfaces in Isogeometric Analysis

    Full text link
    This work presents an efficient quadrature rule for shell analysis fully integrated in CAD by means of Isogeometric Analysis (IGA). General CAD-models may consist of trimmed parts such as holes, intersections, cut-offs etc. Therefore, IGA should be able to deal with these models in order to fulfil its promise of closing the gap between design and analysis. Trimming operations violate the tensor-product structure of the used Non-Uniform Rational B-spline (NURBS) basis functions and of typical quadrature rules. Existing efficient patch-wise quadrature rules consider actual knot vectors and are determined in 1D. They are extended to further dimensions by means of a tensor-product. Therefore, they are not directly applicable to trimmed structures. The herein proposed method extends patch-wise quadrature rules to trimmed surfaces. Thereby, the number of quadrature points can be signifficantly reduced. Geometrically linear and non-linear benchmarks of plane, plate and shell structures are investigated. The results are compared to a standard trimming procedure and a good performance is observed

    Non-prismatic Timoshenko-like beam model

    Get PDF
    The present paper combines an effective beam theory with a simple and accurate numerical technique opening the door to the prediction of the structural behavior of planar beams characterized by a continuous variation of the cross-section geometry, that in general deeply influences the stress distribution and, therefore, leads to non-trivial constitutive relations. Accounting for these peculiar aspects, the beam theory is described by a mixed formulation of the problem represented by six linear Ordinary Differential Equations (ODEs) with non-constant coefficients depending on both the cross-section displacements and the internal forces. Due to the ODEs complexity, the solution can be typically computed only numerically also for relatively simple geometries, loads, and boundary conditions; however, the use of classical numerical tools for this problem, like a (six-field) mixed finite element approach, might entail several issues (e.g., shear locking, ill-conditioned matrices, etc.). Conversely, the recently proposed isogeometric collocation method, consisting of the direct discretization of the ODEs in strong form and using the higher-continuity properties typical of spline shape functions, allows an equal order approximation of all unknown fields, without affecting the stability of the solution. This makes such an approach simple, robust, efficient, and particularly suitable for solving the system of ODEs governing the non-prismatic beam problem. Several numerical experiments confirm that the proposed mixed isogeometric collocation method is actually cost-effective and able to attain high accuracy

    Towards a Mathematical Theory of Behavioral Human Crowds

    Get PDF
    Nicola Bellomo acknowledges the support of the University of Granada, Project Modeling in Nature MNat from micro to macro, https://www.modelingnature.org.This paper has been partially supported by the MINECO-Feder (Spain) research Grant Number RTI2018-098850-B-I00, the Junta de Andalucia (Spain) Project PY18-RT-2422, A-FQM-311-UGR18, and B-FQM-580-UGR20. Livio Gibelli, gratefully acknowledges the financial support of the Engineering and Physical Sciences Research Council (EPSRC) Under Grants EP/N016602/1, EP/R007438/1. Annalisa Quaini acknowledges support from the Radcliffe Institute for Advanced Study at Harvard University where she has been a 2021-2022 William and Flora Hewlett Foundation Fellow. Alessandro Reali acknowledges the partial support of the MIUR-PRIN Project XFAST-SIMS (No. 20173C478N).The first part of our paper presents a general survey on the modeling, analytic problems, and applications of the dynamics of human crowds, where the specific features of living systems are taken into account in the modeling approach. This critical analysis leads to the second part which is devoted to research perspectives on modeling, analytic problems, multiscale topics which are followed by hints towards possible achievements. Perspectives include the modeling of social dynamics, multiscale problems and a detailed study of the link between crowds and swarms modeling.University of Granada, Project Modeling in Nature MNat from micro to macroSpanish Government RTI2018-098850-B-I00Junta de AndaluciaEuropean Commission PY18-RT-2422 A-FQM-311-UGR18 B-FQM-580-UGR20UK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) EP/N016602/1 EP/R007438/1Radcliffe Institute for Advanced Study at Harvard UniversityMinistry of Education, Universities and Research (MIUR) 20173C478

    Computational methods in cardiovascular mechanics

    Full text link
    The introduction of computational models in cardiovascular sciences has been progressively bringing new and unique tools for the investigation of the physiopathology. Together with the dramatic improvement of imaging and measuring devices on one side, and of computational architectures on the other one, mathematical and numerical models have provided a new, clearly noninvasive, approach for understanding not only basic mechanisms but also patient-specific conditions, and for supporting the design and the development of new therapeutic options. The terminology in silico is, nowadays, commonly accepted for indicating this new source of knowledge added to traditional in vitro and in vivo investigations. The advantages of in silico methodologies are basically the low cost in terms of infrastructures and facilities, the reduced invasiveness and, in general, the intrinsic predictive capabilities based on the use of mathematical models. The disadvantages are generally identified in the distance between the real cases and their virtual counterpart required by the conceptual modeling that can be detrimental for the reliability of numerical simulations.Comment: 54 pages, Book Chapte

    Combining the Morris Method and Multiple Error Metrics to Assess Aquifer Characteristics and Recharge in the Lower Ticino Basin, in Italy

    Full text link
    Groundwater flow model accuracy is often limited by the uncertainty in model parameters that characterize aquifer properties and aquifer recharge. Aquifer properties such as hydraulic conductivity can have an uncertainty spanning orders of magnitude. Meanwhile, parameters used to configure model boundary conditions can introduce additional uncertainty. In this study, the Morris Method sensitivity analysis is performed on multiple quantities of interest to assess the sensitivity of a steady-state groundwater flow model to uncertain input parameters. The Morris Method determines which of these parameters are less influential on model outputs. Uninfluential parameters can be set constant during subsequent parameter optimization to reduce computational expense. Combining multiple quantities of interest (e.g., RMSE, groundwater fluxes) when performing both the Morris Method and parameter optimization offers a more complete assessment of groundwater models, providing a more reliable and physically consistent estimate of uncertain parameters. The parameter optimization procedure also provides us an estimate of the residual uncertainty in the parameter values, resulting in a more complete estimate of the remaining uncertainty. By employing such techniques, the current study was able to estimate the aquifer hydraulic conductivity and recharge rate due to rice field irrigation in a groundwater basin in Northern Italy, revealing that a significant proportion of surficial aquifer recharge (approximately 81-94%) during the later summer is due to the flood irrigation practices applied to these fields.Comment: second submission after minor revision
    • …
    corecore